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By recourse to appropriate information theory quantifiers �normalized Shannon entropy and Martín-Plastino-
Rosso intensive statistical complexity measure�, we revisit the characterization of Gaussian self-similar sto-
chastic processes from a Bandt-Pompe viewpoint. We show that the ensuing approach exhibits considerable
advantages with respect to other treatments. In particular, clear quantifiers gaps are found in the transition
between the continuous processes and their associated noises.
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I. INTRODUCTION

Information theory concepts, like different entropic forms
and statistical complexities �1–10�, have proved to be useful
quantifiers in the study and characterization of time series. In
this work we will dwell on an often neglected point, namely,
that in the evaluation of the above mentioned quantifiers, the
determination of the underlying probability distribution P
�associated to a given dynamical system or time series� de-
serves detailed consideration. It is not a given. Indeed, prob-

ability distribution P and sample space � are inextricably
linked. Many schemes have been proposed for a proper se-
lection of the probability space �� , P�. We can mention,
among others: �a� procedures based on amplitude statistics
�11�, �b� binary symbolic dynamics �12�, �c� Fourier analysis
�13�, and �d� wavelet transform �14�. Their applicability de-
pends on particular characteristics of the data such as station-
arity, length of the time series, variation of the parameters,
level of noise contamination, etc. In all these cases the global
aspects of the dynamics can be somehow captured, but the
different approaches are not equivalent in their ability to dis-
cern all the relevant physical details. One must also acknowl-
edge the fact that the above techniques are introduced in a
rather ad hoc fashion and are not directly derived from the
system under study’s dynamical properties themselves, as
achieved, for instance, by the Bandt-Pompe methodology
�15�.

The Bandt-Pompe method �BPM� �15� for evaluating the
probability distribution P is based on the details of the at-
tractor reconstruction procedure. Causal information is, con-
sequently, properly incorporated into the construction pro-
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cess that yields �� , P�. The Bandt-Pompe probability
distribution is the only one among those in popular use that
takes into account the temporal structure of the time series
generated by the physical process under study. A notable
result from the Bandt-Pompe approach is a notorious im-
provement in the performance of the information quantifiers
obtained using the probability distribution P generated by
their algorithm �10,16–18�. Of course, one must assume with
the BPM that the system is weakly stationary and that
enough data are available for a correct attractor reconstruc-
tion.

In this work we revisit the characterization of two well-
known and widely used Gaussian self-similar stochastic pro-
cesses: the fractional Brownian motion �fBm� and its noise,
the fractional Gaussian noise �fGn�. The former is a ubiqui-
tous nonstationary model for many physical phenomena
which have empirical spectra of power-law type, 1 / f�, with
1���3. Thus, the characterization of these processes has
become of interest in different and heterogeneous scientific
fields, such as physics, biology, finance, and telecommunica-
tions �19–21�. We wish, in particular, to investigate the pos-
sibility of developing a unified framework for the description
of the two stochastic processes. For this purpose we use the
Bandt-Pompe approach so as to evaluate the all-important
probability distribution that is associated to the time series
generated by the two processes under analysis. We show that
the ensuing procedure allows for the detection of important
features of these Gaussian self-similar stochastic processes.
A comparison with similar results, but obtained using prob-
ability distributions based on wavelet analysis, will provide
us with an instructive counterpart �22� so as to properly as-
sess what is to be gained with our present way of tackling
things.

II. INFORMATIONAL TOOLS

A. Normalized Shannon entropy and Martín-Plastino-Rosso
intensive statistical complexity

Several statistical complexity measures �SCM� have been
recently introduced in the literature. These are the product of
an entropic measure H times a distance �in probability
space� to a fixed reference state, Q �5�. The latter quantity is
usually called disequilibrium; it works as a quantifier of the
degree of physical structure of a given time series. In Ref. �6�
the disequilibrium Q was built up using Wootters’ statistical
distance and H was taken as the normalized Shannon en-
tropy. The ensuing SCM is neither an intensive nor extensive
quantity in the thermodynamical sense, although it yields
useful results. A natural SCM improvement is to give it an
intensive character, as in Ref. �7�. The concomitant SCM
version is able to grasp essential details of the dynamics and
capable of discerning among different degrees of periodicity
and chaos. This measure, to be referred to as the Martín-
Plastino-Rosso �MPR� intensive statistical complexity, can
be viewed as a functional CJS�P� that characterizes the prob-
ability distribution P associated with the time series gener-
ated by the dynamical system under study.

The MPR intensive statistical complexity measure is writ-
ten as

CJS�P� = QJ�P,Pe�HS�P� . �1�

It associates, to the probability distribution P= �pi : i
=1, . . . ,N�, the entropic measure �normalized Shannon en-
tropy�

HS�P� = S�P�/Smax = �− 	
i=1

N

pi ln�pi�
� Smax, �2�

where Smax=S�Pe�=ln N, �0�HS�1� and Pe

= �1 /N , . . . ,1 /N� is the uniform distribution—S stands for
Shannon entropy. The disequilibrium QJ is defined in terms
of the extensive Jensen-Shannon divergence �7�. It reads

QJ�P,Pe� = Q0J�P,Pe� , �3�

with

J�P,Pe� = �S��P + Pe�/2� − S�P�/2 − S�Pe�/2� , �4�

the above-mentioned Jensen-Shannon divergence, and

Q0 = − 2��N + 1

N

ln�N + 1� − 2 ln�2N� + ln N−1

, �5�

a normalization constant, equal to the inverse of the maxi-
mum possible value of J�P , Pe�, i.e., the value obtained
when one of the components of P, say pm, equals unity and
the remaining pi vanish. This intensive quantity reflects on
the systems’s architecture, being different from zero only if
there exist privileged, or more likely states among the acces-
sible ones �5–7�. It quantifies not only randomness, but the
presence of correlational structures as well �6,7�. The oppo-
site extremes of perfect order and maximal randomness pos-
sess no structure to speak of. In between these two special
instances, a wide range of possible degrees of physical struc-
ture exist, degrees that should be reflected in the features of
the underlying probability distribution.

We insist on the fact that the above SCM is not a trivial
function of the entropy, in the sense that, for a given HS
value, there exists a range of possible SCM values between a
minimum Cmin and a maximum Cmax �5,8,23�. Thus, evaluat-
ing the SCM provides one important additional information
regarding the peculiarities of a probability distribution, not
already carried by the entropy. This fact gets emphasized if
one uses a Bandt-Pompe probability distribution. In order to
study the time evolution of the statistical complexity mea-
sure, a diagram of CJS versus HS can be used, the MPR
causality plane �in this case, HS can be regarded as an arrow
of time �24��. This kind of diagram has been used to study
changes in a system’s dynamics originated by modifications
of some characteristic parameters �5,7,10,18,22,23,25–28�.

B. Bandt-Pompe approach

Additional improvements can be expected if one modifies
the manner in which the underlying probability distribution
is extracted, by a better consideration of the system’s dynam-
ics. For this purpose we follow the Bandt-Pompe approach
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�15�. Given a time series �xt : t=1, . . . ,M� and an embedding
dimension D�1, one is interested in ordinal patterns of or-
der D �15,29,30� generated by

s � �xs−�D−1�,xs−�D−2�, . . . ,xs−1,xs� , �6�

that is, to each time s we assign a D-dimensional vector that
results from the evaluation of the time series at times s ,s
−1, . . . ,s− �D−1�. Clearly, the greater the D value, the more
information about the past is incorporated into these vectors.
By the ordinal pattern of order D related to the time s we
mean the permutation �= �r0 ,r1 , . . . ,rD−1� of �0,1 , . . . ,D
−1� defined by

xs−rD−1
� xs−rD−2

� ¯ � xs−r1
� xs−r0

. �7�

In order to get a unique result we consider that ri�ri−1 if
xs−ri

=xs−ri−1
. Thus, for all the D! possible permutations � of

order D, the probability distribution P= �p���� is given by
their relative frequency

p��� =
Ncard�s�s � D,s has ordinal pattern ��

M − D + 1
, �8�

where Ncard is the cardinality of the set—roughly speaking,
the number of elements in it.

Summing up, Bandt & Pompe �15� proposed a method for
evaluating the probability distribution P associated to a given
time series based precisely in the peculiar facets of the at-
tractor reconstruction problem. In such a way, causal infor-
mation became duly incorporated into the construction pro-
cess that yields �� , P�. The BPM considers a partition of the
D-dimensional state space determined by the intersections of
D! hyperplanes of RD: x1=x2 , . . . ,x1=xD ;x2=x3 , . . . ,x2
=xD ; . . . ;xD−1=xD. Thus, each permutation � of order D can
be associated with one of the connected pieces determined
by the partition. In other words, an ordinal pattern represents
one connected piece of RD, and the union of all pieces is the
total state space RD. The probability distribution P of ordinal
patterns is given by the frequency, in the attractor structure,
of each piece �pattern�; that is, P is assigned by counting the
times that the attractor visits each piece—see Eq. �8�. In
particular, if the attractor is symmetric with respect to the
hyperplanes, all the connected pieces have the same fre-
quency and thus the distribution of ordinal patterns is uni-
form: the attractor visits all the partition pieces with the same
frequency. Consequently, the information provided by the
time series so as to predict geometric locations of successive
D strings vanishes and the entropy is maximal �N=D! then
Smax=ln D! and HS=1�. On the other hand, if the situation is
such that the attractor remains always within just one of the
connected pieces, one can predict with certainty, i.e., HS=0.

The advantages of the BPM reside in �a� its simplicity, �b�
its robustness, and �c� its invariance with respect to nonlinear
monotonous transformations. Also, this method provides an
extremely fast computational algorithm. It can be applied to
any type of time series �regular, chaotic, noisy, or experimen-
tal� �15�. Remark that for the applicability of this approach
we need not to assume that the time series under analysis is
representative of a low dimensional dynamical system. Of
course, the embedding dimension D plays an important role

for the evaluation of the appropriate probability distribution,
since D determines the number of accessible states D!, and
tells us about the necessary length M of the time series
needed in order to work with a reliable statistics. In particu-
lar, Bandt & Pompe suggest for practical purposes to work
with 3�D�7. Concerning this last point in all calculations
reported here the condition M 	D! is satisfied �18�.

In this paper we evaluate the normalized entropy HS and
the MPR intensive statistical complexity measure CJS using
the permutation probability distribution P= �p����, intro-
duced in this section.

III. FRACTIONAL BROWNIAN MOTION
AND FRACTIONAL GAUSSIAN NOISE

Fractional Brownian motion �fBm� is the only family of
processes which is Gaussian, self-similar, and endowed with
stationary increments—see Ref. �22� and references therein.
The normalized family of these Gaussian processes,
�BH�t� , t�0�, is the one with BH�0�=0 almost surely, i.e.,
with probability 1, E�BH�t��=0 �zero mean�, and covariance
given by

E�BH�t1�BH�t2�� =
1

2
�t1

2H + t2
2H − �t1 − t2�2H� �9�

for t1 , t2�R. Here E�·� refers to the average computed with a
Gaussian probability density. The power exponent 0�H
�1 is commonly known as the Hurst parameter or Hurst
exponent. These processes exhibit memory for any Hurst pa-
rameter except for H=1 /2 as one realizes from Eq. �9�. The
H=1 /2 case corresponds to classical Brownian motion and
successive motion increments are as likely to have the same
sign as the opposite, there is no correlation among them.
Thus, Hurst’s parameter defines two distinct regions in the
interval �0, 1�. When H�1 /2, consecutive increments tend
to have the same sign so that these processes are persistent.
For H�1 /2, on the other hand, consecutive increments are
more likely to have opposite signs, thus these processes are
antipersistent. Fractional Brownian motions are continuous
but nondifferentiable processes �in the classical sense�. As a
nonstationary process, they do not possess a spectrum de-
fined in the usual sense; however, it is possible to define a
generalized power spectrum of the form


BH�f� �
1

�f ��
, �10�

with the exponent �=2H+1, 1���3.
The fractional Gaussian noise is introduced as the process

�WH�t� , t�0� obtained from the fBm increments �for discrete
time�

WH�t� = BH�t + 1� − BH�t� . �11�

This is a stationary Gaussian process with mean zero and
covariance given by
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��k� = E�WH�t�WH�t + k�� =
1

2
��k + 1�2H − 2k2H

+ �k − 1�2H�, k � 0. �12�

Note that for H=1 /2 all correlations at nonzero lags vanish
and �W1/2�t� , t�0� thus represents the white noise. The
power spectrum associated to the fractional Gaussian noise is
also given by Eq. �10�, 
WH�f��1 / �f ���, but with ��=2H
−1, −1����1. In the following we will use this power-law
behavior with different ranges for �, for the two stochastic
processes under analysis, gathering both into a unified frame-
work. According to what values it adopts, the parameter �
describes one or the other of the two mentioned processes.

IV. RESULTS AND DISCUSSION

For simulating the fBm and fGn time series we adopt the
Davies-Harte algorithm �31�, as recently improved by Wood
and Chan �32�, which is both exact and fast. In this work ten
time series, each one of length M =215 were analyzed, each
series starting at a different initial condition. For the evalua-
tion of the corresponding associated Bandt-Pompe probabil-
ity distribution �15,29,30�, we chosen to work with an em-
bedding dimension D=6 �6!215�. Notice that the BPM is
applicable to both the fBm and fGn processes �33�. The con-
comitant mean values plus the corresponding standard devia-
tions of both the normalized Shannon entropy HS and the
MPR intensive statistical complexity measure CJS are plotted
in Fig. 1 as functions of the parameter �.

Inspection of Fig. 1 allows one to gather that a clear dif-
ferent dynamical behavior is associated to the fBm and to the
fGn. The fGn exhibits high entropic values, 0.97�HS�1.0,
together with low ones for the MPR complexity 0.0�CJS
�0.06. This agrees with intuitive ideas concerning the no-
tion of noise �remember that for a totally random process, or
ideal noise, we have HS=1 together with CJS=0�. Maximum
of the normalized entropy and minimum of the complexity
are attained at �=0 �white noise�. Notice also that for ���
�0 one observes decreasing �increasing� values for the en-
tropy HS �CJS�. Thus both, persistent and antipersistent
noises, are characterized by similar values of the two quan-
tifiers. On the other hand, the fBm is always characterized by
decreasing �increasing� values of HS �CJS� as � grows. As the
parameter �→3 we observe larger standard deviations �SD�
values. We attribute them to fluctuations associated to errors
in the numerical simulations. This conclusion requires some-
what more elaboration. We repeated our calculations em-
ploying a time series of length M =212. We observe similar
features as those of our previous calculations �depicted in
Fig. 1�. It should be stressed than larger SD values were
found. Moreover, similar behaviors are also observed for
both quantifiers, HS and CJS, when smaller embedding di-
mensions, D=4 and D=5, are considered, as you can con-
clude from Fig. 2.

In Figs. 1 and 2 clear quantifiers gaps can be appreciated
between fGn and fBm values, indicative of their distinct dy-
namical nature. Curiously enough, this is a new result. A
recent approach that employs probability distributions based

on a wavelet description fails to notice such gaps �22�. For a
fBm with H→0 ��→1� we have also found a maximum of
the normalized entropy �HS→1� and minimum of the com-
plexity �CJS→0� in a similar way to the results obtained for
a white noise. In order to ascertain whether we are here
facing effects attributable to the way one obtains these prob-
ability distributions we repeated the above-described calcu-
lations for a wavelet filtered time series. That is, the orthogo-
nal discrete wavelet transform �ODWT� that uses the spline
cubic as a mother wavelet was obtained for each time series
�22,34,35�, and then reconstructed by considering only the
wavelet resolution levels j=−9, . . . ,−1. So, low frequency
components are discarded. Obviously, our filtering process
does modify long-range correlations. HS and CJS correspond-
ing to these new, wavelet filtered, time series are also de-
picted in Fig. 1. The wavelet results are similar, for the fGn
processes, to the previous ones. For the fBm processes they
are different, however. This is due to the above-mentioned

(a)

(b)

FIG. 1. �Color online� Mean values and SD corresponding to the
normalized Shannon entropy HS �top� and MPR intensive statistical
complexity CJS �bottom� as functions of the parameter � for both
the original and the wavelet filtered time series.
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modifications in long-range correlations. Note that for �
�2.2 some differences are observed. We conclude that the
clear different dynamical behavior associated to both pro-
cesses �fBm and fGn�, and more precisely the quantifiers
gaps, are not an artifact of the BPM, they reflect on real
features of these processes.

In Fig. 3 the two Gaussian self-similar stochastic pro-
cesses are plotted in the MPR causality plane, described at
the end of Sec. II A. Both processes are now located on the
right-hand side of this plane. The fBm �1���3� exhibits
entropic values in the interval 0.59�HS�1 while the MPR
complexity values are located in an almost equidistant fash-
ion between the curves of maximum and minimum MPR
complexity. Observe that the maximal and minimal values
for the HS are found for �=1.2 and �=2.8, respectively. As
� increases, correlations among different values become ap-
parent and, consequently, HS decreases. Ordinary Brownian
motion ��=2� is characterized by a relative high entropy and
low MPR complexity �HS�0.9 and CJS�0.18�. Also, persis-

tent fBm �2���3�—long memory processes—are more
complex than antipersistent fBm �1���2�—short memory
ones—in agreement with the intuitive idea one has for this
kind of behavior. Their associated noises �−1���1� ex-
hibit higher entropic values �0.97�HS�1� together with
MPR complexity values between 0 and 0.06. In particular,
persistent and antipersistent �����0� fGn display quite simi-
lar values. Maximum entropy and minimum MPR complex-
ity values are observed for �=0, which corresponds to white
noise.

V. CONCLUSIONS

The focus of the present discussion has been the use of
appropriate quantifiers for the characterization of relevant
features of nonlinear dynamics in connection with the study
of time series. In this work we dwelt on an often neglected
point, namely, that for computing these quantifiers, the deter-
mination of the underlying probability distribution P �asso-
ciated to a given dynamical system or time series� is the

(b)

(a)

FIG. 2. �Color online� Mean values and SD corresponding to the
normalized Shannon entropy HS �top� and MPR intensive statistical
complexity CJS �bottom� as functions of the parameter � are plotted
for our original time series with different embedding dimension D
=4, D=5, and D=6.

(b)

(a)

FIG. 3. �Color online� Continuous lines correspond to curves of
minimum Cmin and maximum Cmax, respectively. Top: Localization
of the fBm and fGn in the MPR causality plane. Bottom: Enlarge-
ment near the ideal point HS=1, CJS=0.
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basic starting stage that deserves detailed consideration. It is
certainly not a given. There are several ways of obtaining it.
We propose using the Bandt-Pompe methodology on account
that the ensuing probability distribution arises in natural
fashion, by taking into account the temporal structure of the
time series generated by the physical process under study. Its
advantages have here been reported with some detail and
seem to recommend it. We wish here to emphasize just one
notable Bandt-Pompe result with regards to the two quanti-
fiers considered in this paper—see Figs. 1 and 2. Clear quan-
tifiers gaps are detected in the transition between the two
stochastic processes under analysis �fBm and fGn� that de-
pend neither upon the length of the time series nor the em-
bedding dimension. These gaps are not observed by using a
wavelet approach �22�.
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